skip to main content


Search for: All records

Creators/Authors contains: "Wang, Yali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY

    Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant,aberrantlybranchedtrichome 3–1(abt3‐1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed thatabt3‐1is a new mutant allele ofAuxin resistant 1(AXR1), which encodes the N‐terminal half of ubiquitin‐activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version ofROP2(CA‐ROP2) caused a reduction of trichome branches, resembling that ofabt3‐1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showedAXR1genetically interacted withROP2and mediated ROP2 protein stability. The loss ofAXR1aggravated the trichome defects ofCA‐ROP2and induced the accumulation of steady‐state ROP2. Consistently, elevatedAXR1expression levels suppressedROP2expression and partially rescued trichome branching defects inCA‐ROP2plants. Together, our results presented a new mutant allele ofAXR1, uncovered the effects ofAXR1andROP2during trichome development, and revealed a pathway ofROP2‐mediated regulation of plant cell morphogenesis in Arabidopsis.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Abstract

    The Arabidopsis (Arabidopsis thaliana) TRANSPARENT TESTA GLABRA2 (TTG2) gene encodes a WRKY transcription factor that regulates a range of development events like trichome, seed coat, and atrichoblast formation. Loss-of-function of TTG2 was previously shown to reduce or eliminate trichome specification and branching. Here, we report the identification of an allele of TTG2, ttg2-6. In contrast to the ttg2 mutants described before, ttg2-6 displayed unique trichome phenotypes. Some ttg2-6 mutant trichomes were hyper-branched, whereas others were hypo-branched, distorted, or clustered. Further, we found that in addition to specifically activating R3 MYB transcription factor TRIPTYCHON (TRY) to modulate trichome specification, TTG2 also integrated cytoskeletal signaling to regulate trichome morphogenesis. The ttg2-6 trichomes displayed aberrant cortical microtubules (cMTs) and actin filaments (F-actin) configurations. Moreover, genetic and biochemical analyses showed that TTG2 could directly bind to the promoter and regulate the expression of BRICK1 (BRK1), which encodes a subunit of the actin nucleation promoting complex suppressor of cyclic AMP repressor (SCAR)/Wiskott–Aldrich syndrome protein family verprolin homologous protein (WAVE). Collectively, taking advantage of ttg2-6, we uncovered a function for TTG2 in facilitating cMTs and F-actin cytoskeleton-dependent trichome development, providing insight into cellular signaling events downstream of the core transcriptional regulation during trichome development in Arabidopsis.

     
    more » « less
  3. Wild cotton species can contribute to a valuable gene pool for genetic improvement, such as genes related to salt tolerance. However, reproductive isolation of different species poses an obstacle to produce hybrids through conventional breeding. Protoplast fusion technology for somatic cell hybridization provides an opportunity for genetic manipulation and targeting of agronomic traits. Transcriptome sequencing analysis of callus under salt stress is conducive to study salt tolerance genes. In this study, calli were induced to provide materials for extracting protoplasts and also for screening salt tolerance genes. Calli were successfully induced from leaves of Gossypium sturtianum (C 1 genome) and hypocotyls of G. raimondii (D 5 genome), and embryogenic calli of G. sturtianum and G. raimondii were induced on a differentiation medium with different concentrations of 2, 4-D, KT, and IBA, respectively. In addition, embryogenic calli were also induced successfully from G. raimondii through suspension cultivation. Transcriptome sequencing analysis was performed on the calli of G. raimondii and G. sturtianum , which were treated with 200 mM NaCl at 0, 6, 12, 24, and 48 h, and a total of 12,524 genes were detected with different expression patterns under salt stress. Functional analysis showed that 3,482 genes, which were differentially expressed in calli of G. raimondii and G. sturtianum , were associated with biological processes of nucleic acid binding, plant hormone (such as ABA) biosynthesis, and signal transduction. We demonstrated that DEGs or TFs which related to ABA metabolism were involved in the response to salt stress, including xanthoxin dehydrogenase genes ( ABA2 ), sucrose non-fermenting 1-related protein kinases ( SnRK2 ), NAM, ATAT1 / 2 , and CUC2 transcription factors ( NAC ), and WRKY class of zinc-finger proteins ( WRKY ). This research has successfully induced calli from two diploid cotton species and revealed new genes responding to salt stress in callus tissue, which will lay the foundation for protoplast fusion for further understanding of salt stress responses in cotton. 
    more » « less
  4. SUMMARY

    Trichome development is a fascinating model to elaborate the plant cell differentiation and growth processes. A wealth of information has pointed to the contributions of the components associated with cell cycle control and ubiquitin/26S proteasome system (UPS) to trichome morphogenesis, but how these two pathways are connected remains obscure. Here, we report that HECT‐type ubiquitin ligase KAKTUS (KAK) targets the cyclin‐dependent kinase (CDK) inhibitor KRP2 (for kip‐related protein 2) for proteasome‐dependent degradation during trichome branching in Arabidopsis. We show that over‐expression ofKRP2promotes trichome branching and endoreduplication which is similar tokakloss of function mutants. KAK directly interacts with KRP2 and mediates KRP2 degradation. Mutation ofKAKresults in the accumulation of steady‐state KRP2. Consistently, inkak pKRP2:KRP2‐GFPplants, the trichome branching is further induced compared with the single mutant. Taken together, our studies bridge the cell cycle control and UPS pathways during trichome development and underscore the importance of post‐translational control in epidermal differentiation.

     
    more » « less